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Abstract-Heat transfer in tissues during electromagnetic heating obtained by a 432 MHz directional 
antenna for therapeutic purposes is considered. The two-dimensional transient heat conduction equation, 
which takes into account the electromagnetic heating and the cooling owing to blood circulation is solved 
by finite-difference means. Solutions in cases of inhomogeneous tissues and of tissues containing large 
blood vessels are given. Also, the analytical solution of the corresponding one-dimensional steady-state 
problem in the principal axis of the electromagnetic field is derived. This solution is in good agreement 
with the two-dimensional numerical solution and may therefore be employed for making quick calculations. 

1. INTRODUCTION 

HEATING of malignant tissues for therapeutic pur- 
poses using electromagnetic fields has recently become 
increasingly interesting. The treatment, known as 
hyperthermia, involves heating of tumour tissue in the 
temperature range 4246°C for a specified period of 
time, usually 30-60 min. Temperature values within 
this range are not directly harmful to normal cells 
while it is hoped that cancerous ones are destroyed as 
they are more sensitive to high temperatures. Hyper- 
thermia may be ‘whole body’, ‘regional’ or ‘localized’. 
In the last case, which is of interest here, the heating 
of the tissue may be due to absorbed electromagnetic 
radiation transmitted by emitting antennas, placed on 
the surface of the skin, as shown in Fig. 1. Related 
surveys on the subjec‘t may be found in refs. [l, 21. 

One of the most important points on tissue heat 
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FIG. 1. A piece of tissue with the electromagnetic antenna 
and the solution domain OABC. 

transfer is the blood vessels, which actually form the 
basic difference between tissue and solid media. 
According to the conventional bioheat transfer theory 
[3], valid for nearly 40 years, the effect of blood vessels 
is taken into account by including in the heat transfer 
differential equation a sink term, which is the product 
of the blood mass flow rate, of the blood specific heat 
and of the difference between the local and the body 
core temperature [3]. Latest heat transfer models [4- 
7], suggest that the above sink term does not succeed 
in describing heat transfer processes in vascular&d 
tissues. Instead, they propose that the small vessels, 
which are always at local tissue temperature, may 
be taken into account collectively by introducing a 
slightly enhanced effective thermal conductivity [4]. 
The large discrete vessels should be described 
separately [6, 7], i.e. as heat sink lines of the actual 
body core temperature. Lastly, the treatment for the 
vessels of intermediate size depends on many par- 
ameters and falls between the collective description 
and the individual description. However, in many 
instances medium size vessels may be described col- 
lectively by using a greatly enhanced effective thermal 
conductivity. 

The numerical algorithm employed in the present 
study is based on conventional finite-difference tech- 
niques and solves the two-dimensional transient prob- 
lem [8, 91. The algorithm may be used either with the 
conventional blood heat sink term or with the new 
enhanced effective thermal conductivity model in con- 
junction with the individual description of large blood 
vessels. Variable properties of the tissue may be taken 
into account and any type of local hyperthermia sys- 
tem may be dealt with provided that the pattern of 
the antenna and therefore the function describing the 
distribution of the specific energy absorption rate 
within the tissue is known. 

Application of the above algorithm is made in the 
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NOMENCLATURE 

a, b, c, s antenna constants measured in QR heat source owing to absorbed 
m-‘, m-‘, m, kg- ‘, respectively electromagnetic radiation w m _ ‘1 

a, coefficient in finite-difference s,, SP source terms in finite-difference 
equation equation 

C tissue specific heat [J kg- ’ K- ‘1 t time [s] 

C, blood specific heat [J kg- ’ K- ‘1 T local tissue temperature [“Cl 
G a large number, e.g. 103’ Th blood temperature, 37°C 
k tissue thermal conductivity 7-S temperature of the skin surface 

wrn-’ K-l] W, blood mass flow rate per unit volume 
P antenna power [W] of tissue [kgm-3s-‘] 

Qb heat sink owing to blood circulation X,Y,Z Cartesian coordinates [ml. 

Iwm-‘I 
Qm heat source owing to metabolic Greek symbol 

process [w m- 3] P tissue density [kg rn- ‘I. 

case of the 432 MHz directional antenna developed 
by ref. [IO]. Figure 2, discussed later, shows the dis- 
tribution of the dimensionless energy generated within 
the tissue, corresponding to this antenna. The results 
include temperature contours at various time steps 
and a parametric study in the steady state. Solutions 
in cases of inhomogeneous tissues and of tissues 
containing large blood vessels are given. Also, the 
analytical solution of the one-dimensional steady- 
state problem is derived along the symmetry axis of 
the antenna. Good agreement is observed between the 
analytical solution and the two-dimensional numeri- 
cal solution, thus suggesting that the former may be 

FIG. 2. Lines of constant dimensionless heat generation 
Q,/psP within the solution domain OABC, according to 
equation (2) for antenna constants a = - 127 m- ‘, 

b = - 129 m- ‘, c = 0.0245 m. 

employed for making quick calculations with good 
accuracy. 

2. DIFFERENTIAL EQUATION AND 
BOUNDARY CONDITIONS 

With reference to Fig. 1, the two-dimensional heat 
conduction equation may be written as 

pC$=f$~)+$(k$)+Q.+Qm-Qb (1) 

where T is the local temperature, X, y denote the 
Cartesian coordinates, t the time and p, C and k the 
density, the specific heat and the thermal conductivity 
of the tissue, respectively. The term QR represents the 
heat generated per unit volume of tissue, owing to the 
electromagnetic radiation absorbed. In general, it may 
be any function of the space and time coordinates and 
in the present case it is of the form [lo] 

? 
QR = psf,e”“-O 01) eh~-if-X+r) 

(2) 

where s, a, b, c are the antenna constants and P the 
transmitted power, which may be varied depending 
on the application requirements. 

The term Qt, represents a heat sink, owing to blood 
circulation, which according to the conventional 
bioheat transfer theory may be expressed as [3] 

Qb = W&V- TJ (3) 

where Tb stands for the blood temperature which may 
be taken either constant or variable as the blood is 
heated passing through the tissue, W, denotes the 
mass flow rate of the blood per unit volume of tissue 
and Cb is the blood specific heat. The large blood 
vessels are taken into account individually by con- 
sidering internal cooling passages of fixed temperature 
(37°C). 

Lastly, the term Q, in equation (1) represents the 
heat generated by the metabolic process and is taken 
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approximately equal to zero, as it is very small com- 
pared to the term QR. 

It can be seen from equation (2) and Fig. 2 that 
near the skin surface (x N 0) high values of heat QR 
are generated thus causing dangerously high tem- 
peratures to appear there. Therefore, cooling of the 
skin surface at T, < 37°C should be attempted in 
order to decrease the high values of temperature and 
force the high-temperature region deeper into the 
tumour. 

With reference to Fig. 1, the boundary conditions 
are as follows: on boundary OC of element OCBA, 
which is an axis of symmetry, the heat flux is equal to 
zero. On boundaries AB and BC, which are con- 
sidered to be removed enough, a temperature of 37°C 
is prescribed. Lastly, the surface of the skin OA is 
cooled at a prescribed temperature T,. 

3. NUMERICAL SOLUTION OF THE 

TWO-DIMENSIONAL TRANSIENT PROBLEM 

Solution of differential equation (1) is performed 
within the solution domain OABC of Fig. 1, by a 
standard finite-difference technique. Briefly, a 
Cartesian grid composed of coordinate lines is im- 
posed on the solution domain, and differential equa- 
tion (1) is cast into finite-difference form by inte- 
gration over the control volumes of the grid and by 
averaging over a finite increment of time using an 
implicit scheme [ 111. The resulting finite-difference 
equation for each node P of the grid is of the form 

( > 
can-& Tp =‘&T,+S,, n = N,S,E,W (4) 
n n 

where the summation is over the four neighbours N, 
S, E, W of the typical node P and the expression for 
the coefficients a and S may be found in ref. [ll] 
among others. One equation of the form of equation 
(4) is written for each node P of the computational 
grid, thus resulting in a set of simultaneous algebraic 
equations, which is solved by using known iterative 
techniques [ 111. 

In the case of a large blood vessel contained within 
the solution domain, it is desired that the temperature 
at the location of the vessel be held at a specified 
temperature Tb. This is obtained by specifying at the 
location of the vessel 

S, = GT, (5) 

Sp= -G (6) 

where G is a large number (e.g. 1030). It is easy to see 
that because of relations (5) and (6), equation (4) will 
give T = Tb at the desired grid nodes. 

4. ANALYTICAL SOLUTION OF THE ONE- 

DIMENSIONAL STEADY-STATE PROBLEM 

In the one-dimensional steady-state case in the x- 
direction (Fig. l), differential equation (1) with QR 

and Q, taken from equations (2) and (3), respectively, 
the Q, being zero, is reduced to 

k~+psPe”‘“-O.Ol’ - W&T- Tb) = 0. (7) 

The above equation may be integrated in the region 
x = O-l with boundary conditions 

T=T, atx=O (8) 

T=37”C atx=I (9) 

to yield 

F T-37 _ sinh (m(l-x)) sinh (m(l-x)) -__ 
T,-37 sinh (ml) T,-37 sinh (ml) 

+e a, sinh (mx) eox 

sinh (ml) 1 (10) 
where 

m = (WbCb/k)L/2 

F = psPe-“l’oo 

k(m2 -a’) ’ 

(11) 

(12) 

5. RESULTS 

In the calculations presented here, the antenna 
constants have been fixed to the typical values s = 
12.5 kg-‘, a= -127 m-‘, b= -129 m-‘, c= 
0.0245 m. Figure 2 shows lines of constant energy, 
generated within the solution domain, in the dimen- 
sionless form QJpsP, calculated according to equa- 
tion (2) with the above values of the antenna con- 
stants, 

5.1. Variation of the temperature field with time 
An example of the results of the numerical solution 

is given in Figs. 3(a)-(c) which show isotherms at 
times t = 1, 4 and 10 min (steady state), respectively, 
with the initial temperature field taken 37°C every- 
where. These results correspond to the following 
values of the parameters involved : p = 1000 kg m- 3, 
C=4180Jkg-‘K-‘,k=0.5016Wm-‘K-‘,P= 
20 W, W, = 8 kg mm3 s-l, C,, = 3344 J kg-’ K-‘, 
T, = 20°C. The maximum temperature T,, = 43.3”C 
is observed in Fig. 3(c) on the axis of symmetry y = 0 
at a depth of 9 mm from the surface of the skin. 

In the above example, as in almost all cases exam- 
ined, the fully steady state is reached, with accuracy 
O.l”C, at t = 10 min, although the temperature field 
is very close to the steady state considerably earlier. 
Thus, at t = 6 and 8 min the temperature field has 
reached 99 and 99.5% of the steady-state solution. 
The greater delay to reach the steady state is observed 
on the axis of symmetry y = 0 in the region of high 
temperatures, as expected. 
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FIG. 3. Predicted isotherms at times r = I. 4 and I > 10 min (steady state) for p = IOOOU kg m ‘. 
C=4180Jkg~‘K~*,k=0.5016Wm-‘K~‘,P=20W, W,=8kgm-‘s~‘,C,=3344Jkg-‘K~‘, 

T 3 = 20°C. 

5.2. Parametric study in the steady state 
Because of the numerous parameters involved in the 

governing differential equation (I), a generalization of 
the results is very difficult. 

For a specified kind of antenna (i.e. for fixed values 
of the antenna constants) the main parameters in- 
fluencing the problem are : the transmitted power P, the 
mass flow rate of the blood per unit volume of tissues 
W,, the temperature T, at which the surface of the skin 
is cooled, and the thermal conductivity k of the tissue. 
Numerical solutions of differential equation (1) 
have been obtained for values of the above par- 
ameters in the following ranges : 

P = 15-3ow 

W, = 5-9kgme3 s-’ 

T, = IO-30°C 

k=O.C0).8Wm-‘K-’ 

with the remaining parameters tixed at the usual values 
p = 1000 kg rnm3, C = 4180 J kg-’ K’, C, = 3344 
J kg- ’ K- ‘. Figure 4 shows the temperature variation 
along the axis of symmetry OC in 16 cases defined by 
the limits of the above ranges. In the same figure, 
the one-dimensional analytical solution according to 
equation (10) is also presented, which is in good agree- 
ment with the numerical two-dimensional solution. 

With reference to the above mentioned figure, it is 
seen that the effect of all main p~arne~~ P, Wb, T, and 
k is considerable. As expected, temperatures increase 
with increasing transmitted power P and decrease with 
increasing blood mass flow rate IV,. The effect of 
lowering surface temperature T, is to decrease the 
maximum temperature developed and to force its 
Iocation deeper into the tissue. Lastly, high values of 

the tissue thermal conductivity result in more uniform 
temperature variations and lower maximum tem- 
peratures. 

In the range of parameters examined, the lowest tem- 
peratures are developed in the case of P = 15 W, 
Wi,=9kgm-3s”‘,T,=10”Candk=0.8Wm-’K-’, 
i.e. a maximum temperature T,,, 2: 39°C is ob- 
tamed, which is not high enough for therapeutic 
purposes. Therefore, in this case of high values of the 
tissue properties W, and k, higher values of P and T, 
have to be employed. At the other end of the range, 
forP=30W, W,=5kgme3s“, T,=30”Cand 
k = 0.4 W m-’ K”‘, the highest temperatures are 
observed with 7’,,, cz: 57”C, which is harmful and 
therefore lower values of P and T, must be employed. 

In conclusion, the above discussed Fig. 4 which 
shows the curves for the limiting vaiues of the tissue 
properties (k, W,) and of the conditions of application 
(P, ‘P,), can be used in practice as a guide showing the 
maximum temperature expected. Further, because 
of the close agreement of the one-dimensional ana- 
lytical solution, given by equation (IO), with the two- 
dimensional numerical solution, the former may be 
employed for calculating accurately enough and very 
quickly the expected temperature variation along the 
antenna axis for any values of the parameters involved 
and of the antenna constants. The derived analytical 
solution may be particularfy useful for on-line caf- 
culations with microcomputers connected with hypcr- 
thermia systems, a task towards which recent efforts 
are directed. 

5.3. Variable tissue properties 
In reality, the properties of the tumour are different 

to those of the normal tissue. Therefore, it is of interest 
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Frc. 4. Calculated temperature variation in the steady state along the axis of symmetry OC for various 
values of the main parameters P, W’s, T,, k with the remaining parameters fixed at the usual values 

p = 1000 kg rne3, C = 4180 J kg-’ K-l, C, = 3344 J kg-’ K-‘. 

to examine such cases. An example is given in Fig. 5. 
The shaded area represents a likely location of the 
tumour. Inside this area the thermal conductivity and 
the blood mass flow rate have been taken as kin = 
0.4 W m- ’ K- ’ and (IV,,), = 5 kg m- 3 s- ‘, respectively. 
Outside the tumour area they have been fixed to the 
usual values k,,, = 0.5016 W m- ’ K-‘, (IV,),,, = 
8 kg m- 3 s- ‘. The remaining properties, which seem 
to be rather insensitive to tissue changes, are con- 
sidered constant throughout the field, i.e. p = 1000 kg 
m -3,C=4180Jkg-‘K-‘,Ct,=3344Jkg-1K-’, 
and the application parameters, in this example, are 
taken as P = 20 W, T, = 20°C. 

Comparison of the steady-state isotherms of Fig. 5 
to those of Fig. 3(c) shows the effect of the decreased 
blood mass flow rate and thermal conductivity within 
the tumoyr area. As expected higher temperatures are 
developed in the case of Fig. 5, especially within the 
tumour (maximum temperature 46.2”C as compared 
to 43.3”C) owing to the reduced conductivity and 
cooling. 

Figure 6 shows a parametric study in the case of a 
tumour lying at the same location and under the same 
conditions as above. Here, variables are the thermal 
conductivity and the blood mass flow rate inside the 
tumour, which are varied in the range kin = 0.4- 

0.8 W m-l K-‘, (IV&” = 5-9 kg me3 s-l. The figure 
shows the variation of the maximum temperature T,,, 
of the field as a function of (I+‘& with kh as a par- 
ameter. It is seen that, in the ranges of ki, and (IV&” 
examined, the influence of kin is strong at the low 
values of (Ws)in and causes a 3°C change of T,,,,, 
while at the high values of (IV& it is weak and causes 
a change of about 1.5”C. Similarly, the influence of 
(IV&,, is strong at the low values of kin and weak at 
the high values. 

5.4. E#ect of large vessels 
As mentioned in the Introduction, the large vessels 

(arteries or veins) cannot be described collectively, 
i.e. by the heat sink term Q,, (equation (3)) or by 
introducing an enhanced effective thermal con- 
ductivity [4], but they have to be taken into account 
individually. Solutions for various geometries with 
discrete large vessels have been obtained in con- 
junction with the directional antenna under con- 
sideration (equation (2)). Examples of calculated 
temperature contours are shown in Figs. 7(a)- 

(c), in which the influence of small vessels on 
tissue heat transfer has been taken into account 
by the usual sink Qs method and the following 
values have been given to the parameters involved: 
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FIG. 5. Predicted steady-state isotherms in the case when 
the thermal conductivity and the blood mass flow rate within 
the tumour (shown shaded) are k., = 0.4 W m-’ K-r and 
( W,), = 5 ki m- ‘s- ‘, resp&tively,‘while outside the tumour 
they are k,,, = 0.5016 W m-’ Km’, (W&k, = 8 kgmw3 s-‘. 
The remaining parameters have the values p = 1000 kg rnm3, 
C=4180Jkg’K-‘,Cb=3344Jkg-‘K-‘,P=20W, 

r, = 20°C. 

40’ ’ 8 8 ’ I 8 8 8 ’ ’ ’ 
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FIG. 6. Predicted maximum temperature in the steady state 
as a function of the blood mass flow rate (W,),, inside the 
tumour for various values of the thermal conductivity k,, 
inside the tumour. The values of the above properties out- 
side the tumour are (W,),,, = 8 kg me3 s- ‘, k,,, = 
0.5016 W m-’ K- ‘. The values of the remaining parameters 

and the location of the tumour are the same as in Fig 5. 

p = 1000 kg mm3, C = 4180 J kg-’ K- ‘, k = 0.5016 
W m-’ K-‘, P=20 W, W,=8 kg mu3 s-‘, 
Cb = 3344 J kg-’ K-‘, T, = 20°C. 

Comparison of Figs. 3(c) and 7(a) shows that when 
a vessel is located away from the axis of symmetry of 
the antenna ( y = 0), its effect will be a local change 
in the temperature field without affecting the location 
and the level of the maximum temperature. However, 

when the vessel lies on y = 0, as shown in Figs. 7(b) 
and (c), the closer it is to the location of the maximum 
temperature the more important its effect will be. 
Thus, for x = 6 mm (Fig. 7(b)) the vessel causes the 
maximum temperature to drop from 43.3 to 42°C and 
to move the maximum temperature location deeper 
and away from the axis of symmetry, while for x = 9 
mm (Fig. 7(c)) these effects are stronger. 

6. CONCLUSION 

A finite-difference solution has been given for the 
two-dimensional transient heat transfer problem in 
tissues during local hyperthermia with a 432 MHz 
directional antenna. The method of solution is general 
and may be used with various types of hyperthermia 
systems and either with the conventional blood heat 
sink term or by the new enhanced effective thermal 
conductivity models in conjunction with an individual 
description of the large blood vessels. Also, the ana- 
lytical solution of the corresponding one-dimensional 
steady-state problem has been derived. 

The main conclusions are summarized below. 

(a) The fully steady state is reached with accuracy 
O.l”C at t = 10 min, although the temperature field is 
very close to the steady state considerably earlier. 
Thus, at t = 6 and 8 min the temperature field has 
reached 99 and 99.5%, respectively, of the steady- 
state solution. 

(b) Since a generalization of the results was difficult, 
owing to the numerous parameters involved, solutions 
corresponding to limiting values of the main par- 
ameters have been given. These solutions may be used 
in practice as a guide showing the expected tem- 

peratures developed. In the ranges examined, the 

maximum temperature of the field, which is obtained 

on the axis of symmetry, varies from about 39°C (for 
P=15 W, W,=9 kg mm3 s’, T,=lo”C, k= 

0.8 W m ’ Km ‘) to about 57°C (for P = 30 W, W, = 

5kgm ‘s’. T, = 30 ‘C. k = 0.4 W m ’ K ‘). The 
depth, measured from the skin surface, where the 
maximum temperature is located, varies from 6 to 
16 mm corresponding to cooling of the skin surface 
at 30 and 10°C. 

(c) The analytical solution of the corresponding 
one-dimensional problem in the principal axis of the 
electromagnetic field is in good agreement with the 
numerical two-dimensional solution. Therefore, the 
former may be employed for making quick cal- 
culations with good accuracy. The derived analytical 
solution may be particularly useful for microcomputer 
on-line calculations connected with hyperthermia sys- 
tems, a task towards which recent efforts have been 
directed. 

(d) The effect of different thermal conductivity and 
blood mass flow rate within the normal and the neo- 
plastic tissue has been examined. Changes of the 
maximum temperature of up to 5°C have been 



Heat transfer in tissues radiated by a 432 MHz directional antenna 

BLOOD V&%fL 
AT x=ob Cm, Y=mm 

37- 

FIG. 7. Predicted steady-state isotherms in the case of tissue containing a large blood vessel heated at: 
(a)x=0.6cm,y=1.1cm;(b)x=0.6cm,y=O;(~)~=0.9~,j’ in 0. The values of the parameters 

involved are the same as in Fig. 3. 

observed in respect of the tumour dimensions 
considered and the ranges of variables under 
examination. 

(e) Solutions obtained in the case of tissues con- 
taining large blood vessels showed that when a large 
vessel is located away from the principal axis of the 
electromagnetic field, its effect will be only a local 
change in the temperature field. When the vessel lies 
on the principal axis, it causes a considerable drop of 
the maximum temperature and a considerable dis- 
placement of its location away from the axis. 
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TRANSFERT THERMIQUE DANS DES TISSUS CAUSE PAR UNE ANTENNE 
DIRECTIONNELLE A 432 MHz 

R&urn&--On considire le transfert thermique dans des tissus pendant le chauffage Blectromagnbtique 
obtenu avec une antenne directionnelle $432 MHz pour des buts thkrapeutiques. L’iquation du transfert 
de chaleur bidimensionnel tenant compte du chauffage &lectromagn&tique et du refroidissement par la 
circulation sanguine est rksolue par la m&hode des diffkrences finies. On donne des solutions pour des 
tissus non homogtnes et des tissus contenant de gros vaisseauz sanguins. On derive aussi la solution 
analytique du problkme permanent et monodimensionnel dans l’axe principal du champ ilectromag&tique. 
Cette solution est en bon accord avec la solution numbrique bidimensionnelle et elle peut &tre employ&e 

dans des calculs rapides. 

WARMETRANSPORT IN ZELLGEWEBEN INFOLGE EINER GERICHTETEN 
ELEKTROMAGNETISCHEN MHZ-BESTRAHLUNG 

Zusammenfassung-Es wird der WLrmetransport in Zellgewebe beim elektromagnetischen Heizen mit 
Hilfe einer 432 MHz-Richtantenne fiir therapeutische Anwendungen untersucht. Die zweidimensionale 
instationare Wiirmeleitgleichung wird unter Beriicksichtigung des elektromagnetischen Heizens und der 
durch Blutzirkulation verursachten Kiihlung mit Hilfe eines Finite-Differenzen-Verfahrens gel&t. Es 
werden Lijsungen angegeben fiir den Fall inhomogener Zellgewebe und fiir Zellgewebe mit groBen Blut- 
geWl3en. Desweiteren wird die analytische Liisung des entsprechenden eindimensionalen stationgren Falls 
in der Hauptachse des elektromagnetischen Feldes hergeleitet. Diese Liisung stimmt mit der zwei- 
dimensionalen numerischen Liisung gut iiberein und kann daher fiir iiberschllgige schnelle Berechnungen 

verwendet werden. 

TEl-IJlOl-IEPEHOC B TKAHIIX I-Ion BO3flEfiCTBHEM M3JIY’JEHkl)T C ‘JACTOTOn 
432 MTq OT HAIIPABJIEHHOR AHTEHHbI 

-oTautast-PaccMaTpmsaeTcll Tennonepenoc B Txanxx npe narpeee 3nexTpoMarmiTnbIM a3nyuenueM c 
YacTorok 432 MTq OT tianpaanemiofi aHTemibI, ucnonbsyehtoro B TepaneemgecRux uennx. M~TO~OM 
KoHeqHblx pa3Hocreft pemeH0 nejwepwe iwxaqtioHapwe ypawewie TennonpoBonwxi c yqerord 
3JIeKTpOMaTHHTHOrO HarpeBa TXaHefi a HX OxJlweHHX 38 C’ieT miplCyJI5mJiH KpOBH. PemeHH5l AaHbl llJI5l 
HeOeROpOgHbIX TKaHei W A.ilR TaaHeii C KpynHbIMH KpOBeHOCHbIMA COCyaaMH. I-IOJly’ieHO TaKre aHaJlH- 
TBYecxoe pememie coo-rBeTcreymmii 0LuIoMepHoii cTauuotiapHoi3 3aLla=m no rnaBnoli ocn 3nexrpo- 
MarHHmoro norm. AH~JIUTH~~CKO~ pememie xopomo cornacyeTcr c DyMepHbIM sHcneHHbIM pememieu 

R nO3TOMy MOXCeT HCnOJIb30BaTbCI AJIll 6blc~p~x paClreTOB. 


